Дана полая сфера радиуса $%R$% заряженная отрицательным зарядом $%|q|$%. В сфере проделали отверстия так, как показано на рисунке: На расстоянии $%R$% от одного из отверстий удерживается положительно заряженная частица. Опишите движение частицы и её кинетическую энергию после того, как её отпустили. Моя попытка: для случая когда частица находится вне сферы можно по Гауссу считать, что весь заряд на сфере сконцентрирован в центре. Соответственно, до входа в сферу он будет ускорятся по закону кулона. Однако после того, как заряд проникнет в сферу, как мне кажется, он будет двигаться равномерно (из-за симметрии системы равнодействующая всех сил будет равна нулю). Тут я не совсем уверен, ибо есть эти отверстия, к которым можно отнестись как к суперпозиции положительных и отрицательных зарядов. И ещё - если частица ускоряется по закону кулона (сила обратно пропорциональна квадрату радиуса), то как будет меняться её кинетическая энергия? Будет ли график кинетической энергии вида $%1/r$%? задан 21 Апр '14 13:35 unm |
отвечен 21 Апр '14 21:11 zolton 1
Спасибо! Насчёт 2. - может наоборот? Ведь кинетическая возрастает - положительная частица ускоряется к центру сферы. И насчет отверстий - как я понимаю, в этой задаче они особой роли не играют (существуют только чтобы частица могла проникнуть в сферу). Однако если размеры отверстий достаточно велики - изменится ли что либо в самой сфере? Разве поле всё равно будет отсутствовать? Благодарю заранее за ответ.
(21 Апр '14 21:17)
unm
(22 Апр '14 7:23)
zolton
|